skip to main content


Search for: All records

Creators/Authors contains: "Liepold, Emily R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The three-dimensional intrinsic shape of a galaxy and the mass of the central supermassive black hole provide key insight into the galaxy’s growth history over cosmic time. Standard assumptions of a spherical or axisymmetric shape can be simplistic and can bias the black hole mass inferred from the motions of stars within a galaxy. Here, we present spatially resolved stellar kinematics of M87 over a two-dimensional 250″ × 300″ contiguous field covering a radial range of 50 pc–12 kpc from integral-field spectroscopic observations at the Keck II Telescope. From about 5 kpc and outward, we detect a prominent 25 km s−1rotational pattern, in which the kinematic axis (connecting the maximal receding and approaching velocities) is 40° misaligned with the photometric major axis of M87. The rotational amplitude and misalignment angle both decrease in the inner 5 kpc. Such misaligned and twisted velocity fields are a hallmark of triaxiality, indicating that M87 is not an axisymmetrically shaped galaxy. Triaxial Schwarzschild orbit modeling with more than 4000 observational constraints enabled us to determine simultaneously the shape and mass parameters. The models incorporate a radially declining profile for the stellar mass-to-light ratio suggested by stellar population studies. We find that M87 is strongly triaxial, with ratios ofp= 0.845 for the middle-to-long principal axes andq= 0.722 for the short-to-long principal axes, and determine the black hole mass to be(5.370.25+0.37±0.22)×109M, where the second error indicates the systematic uncertainty associated with the distance to M87.

     
    more » « less
  2. Abstract

    We present a stellar dynamical mass measurement of a newly detected supermassive black hole (SMBH) at the center of the fast-rotating, massive elliptical galaxy NGC 2693 as part of the MASSIVE survey. We combine high signal-to-noise ratio integral field spectroscopy (IFS) from the Gemini Multi-Object Spectrograph with wide-field data from the Mitchell Spectrograph at McDonald Observatory to extract and model stellar kinematics of NGC 2693 from the central ∼150 pc out to ∼2.5 effective radii. Observations from Hubble Space Telescope WFC3 are used to determine the stellar light distribution. We perform fully triaxial Schwarzschild orbit modeling using the latest TriOS code and a Bayesian search in 6D galaxy model parameter space to determine NGC 2693's SMBH mass (MBH), stellar mass-to-light ratio, dark matter content, and intrinsic shape. We findMBH=1.7±0.4×109Mand a triaxial intrinsic shape with axis ratiosp=b/a= 0.902 ± 0.009 andq=c/a=0.7210.010+0.011, triaxiality parameterT= 0.39 ± 0.04. In comparison, the best-fit orbit model in the axisymmetric limit and (cylindrical) Jeans anisotropic model of NGC 2693 preferMBH=2.4±0.6×109MandMBH=2.9±0.3×109M, respectively. Neither model can account for the non-axisymmetric stellar velocity features present in the IFS data.

     
    more » « less